Restricted completion of sparse partial Latin squares

نویسندگان

  • Lina Jansson Andrén
  • Carl Johan Casselgren
  • Klas Markström
چکیده

An n× n partial Latin square P is called α-dense if each row and column has at most αn non-empty cells and each symbol occurs at most αn times in P . An n× n array A where each cell contains a subset of {1, . . . , n} is a (βn, βn, βn)-array if each symbol occurs at most βn times in each row and column and each cell contains a set of size at most βn. Combining the notions of completing partial Latin squares and avoiding arrays, we prove that there are constants α, β > 0 such that, for every positive integer n, if P is an α-dense n× n partial Latin square, A is an n× n (βn, βn, βn)-array, and no cell of P contains a symbol that appears in the corresponding cell of A, then there is a completion of P that avoids A; that is, there is a Latin square L that agrees with P on every non-empty cell of P , and, for each i, j satisfying 1 ≤ i, j ≤ n, the symbol in position (i, j) in L does not appear in the corresponding cell of A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The completion of partial Latin squares

In recent times there has been some interest in studying partial latin squares which have no completions or precisely one completion, and which are critical with respect to this property. Such squares are called, respectively, premature partial latin squares and critical sets. There has also been interest in related maximal partial latin squares. This paper will explore the connection between t...

متن کامل

Completion of Partial Latin Squares

In this thesis, the problem of completing partial latin squares is examined. In particular, the completion problem for three primary classes of partial latin squares is investigated. First, the theorem of Marshall Hall regarding completions of latin rectangles is discussed. Secondly, a proof of Evans’ conjecture is presented, which deals with partial latin squares of order n containing at most ...

متن کامل

Premature partial latin squares

We introduce the notion of premature partial latin squares; these cannot be completed, but if any of the entries is deleted, a completion is possible. We study their spectrum, i.e., the set of integers t such that there exists a premature partial latin square of order n with exactly t nonempty cells.

متن کامل

On the Completion of Partial Latin Squares

In this paper a certain condition on partial latin squares is shown to be sufficient to guarantee that the partial square can be completed, namely, that it have fewer than n entries, and that at most [(n + I)/21 of these lie off some line,where n is the order of the square. This is applied to establish that the Evans conjecture is true for n < 8; i.e., that given a partial latin square of order...

متن کامل

Completing partial latin squares with prescribed diagonals

This paper deals with completion of partial latin squares L = (lij) of order n with k cyclically generated diagonals (li+t,j+t = lij + t if lij is not empty; with calculations modulo n). There is special emphasis on cyclic completion. Here, we present results for k = 2, . . . , 7 and odd n ≤ 21, and we describe the computational method used (hill-climbing). Noncyclic completion is investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1608.07383  شماره 

صفحات  -

تاریخ انتشار 2016